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ABSTRACT

Plane viscous channel flows are perturbed and the ensuing initial-value

problems are investigated in detail. Unlike traditional methods where trav-

eling wave normal modes are assumed for solution, this work offers a means

whereby completely arbitrary initial input can be specified without having

to resort to eigenfunction expansions. The full temporal behavior, including

both early time transients and the long time asymptotics, can be determined

for any initial disturbance. Effects of three-dimensionality can be assessed.

The bases for the analysis are: (a) linearization of the governing equations;

(b) Fourier decomposition in the spanwise and streamwise directions of the

flow and; (c) direct numerical integration of the resulting partial differen-

tial equations. All of the stability data that are known for such flows can

be reproduced. Also, the optimal initial conditions can be determined in

a straight forward manner and such optimal conditions clearly reflect tran-

sient growth data that is easily determined by a rational choice of a basis for

the initial conditions. Although there can be significant transient growth for

subcritical values of the Reynolds number using this approach, it does not

appear possible that arbitrary initial conditions will lead to the exception-

ally large transient amplitudes that have been determined by optimization

of normal modes. The approach is general and can be applied to other

classes of problems where only a finite discrete spectrum exists, such as the

boundary layer for example.

1This work was supported by the National Aeronautics and Space Administration

under NASA Contract No. NAS1-19480 while the authors were in residence at the Institute

for Computer Applications in Science and Engineering (ICASE), NASA Langley Research,

Hampton, VA 23681-0001.





1 INTRODUCTION

The subject dealing with the fate of disturbances in well established

flows remains a major topic of fluid mechanics. As the means of obtaining

quantitative results for any specific problem has improved, the number of
contributions in this area has grown almost without bounds. And, indeed,

almost every conceivable prototypical flow has been subjected to scrutiny

in this manner. The scheme is well conceived: introduce perturbations into

a defined basic flow, llnearize the governing equations, and then determine

from the initial-value problem the resulting dynamics. In principle this can

be done but, in practice, it is a formidable task. Some of the difficulties entail

non self-adjoint and singular differential equations among other obstacles.
Even the use of the computer and numerical methods have not been easily

adaptable. Thus, the net result is that (almost without exception) it was

considered adequate if a flow was determined to be stable or unstable. This

was done by assuming a separable normal mode solution in the form of

traveling waves and then establishing the existence of at least one unstable

eigenvalue. No attention was directed to any particular initial-value or the

transient period of the dynamics. Indeed, this part of the evolution was not

thought to have any significance and, in view of the complications involved

in the linear ordinary differential equations, it was left to speculation.

More recently the early transient period for the perturbations has been

shown to reveal that a superposition of decaying normal modes may grow

initially albeit decay as time goes on. Although the basic origins and recog-

nition of this type of response should properly be given to Kelvin (1887) and

Orr (1907a, 1907b), there is an eyer widening probe being made; cf. Boberg

and Brosa (1988), Gustavsson (1991), Butler and Farrell (1992), Reddy and

Henningson (1993), or Trefethen et al. (1993) as major references. Briefly, it
has been shown that transient growth can be significant even for subcritical

values of the Reynolds number and therefore nonlinearity may ensue, mak-

ing an exponentially growing normal mode a moot point. In point of fact,

this sort of behavior is not hard to grasp because any non self-adjoint differ-

ential equation will have eigenvectors that are not orthogonal and therefore

there can be algebraic behavior for early time. It is clear that the least

damped normal modes should be the ones that are dominant during this

early period.

Other approaches for demonstrating algebraic growth have been given

by Gustavsson (1979), Benney and Gustavsson (1981), and Criminale and

Drazin (1990). In the first case, Laplace transforms were used for the distur-

bance equations and algebraic behavior was found because there are branch

cuts needed for the inversion of the transforms; poles correspond to expo-

nential growth or decay. In the second work, it was shown that, if three-

dimensional disturbances are considered, then there can be a resonance be-

tween the normal modes of the Orr-Sommerfeld equation and those of the

Squire equation. Such resonance does occur and it is for damped expo-
nential modes. The last paper dealt with the existence of the continuous



spectrumaswell asthe discretenormalmodesbut, again,it is algebraic
temporalbehaviorthat results.The Laplace inversions of Gustavsson that

led to algebraic growth were also due to the continuous rather than the dis-

crete spectrum but, unlike the Criminale and Drazin presentation, general
initial-values were not taken into account.

The results of the various investigations that have been made for channel

flows suggest that the early transient growth can be extremely large (factors

of 20 to 1000) at subcritical values of the Reynolds number when consid-

ering optimal growth determined from variational techniques. It should be

emphasized that not one exponentially growing mode is involved in this

process and, although not explicitly stated, the implication is that no mat-

ter what may be the initial input, this exceptional growth will be present.

Such a premise is subject to scrutiny. Granted variational calculations will

assign values to the coefficients of the modes of the expansion in terms of

the eigenfunctions, but such a determination may not be the same as for a

specific initial-value distribution used to determine the relative values of the

coefficients of the eigenmodes. As outlined in Betchov and Criminale (1967)

and Drazin and Reid (1981), the use of the eigenfunctions in the initial-value

problem requires the adjoint differential equation in order to fix the coeffi-

cients. Moreover, it is known Schensted (1960) that the set of such functions

is complete for channel flows and consequently there is no conceptual diffi-

culty in the prescription. Lastly, there is no continuous eigenspectrum for

viscous channel flows. Thus, transient growth in these flows is due entirely

to the non orthogonal eigenvectors of the non self-adjoint differential equa-

tions. The optimal formulation is due to Farrell (1988), Butler and Farrell

(1992) and has been corroborated by Reddy and Henningson (1993). Up

to thirty eigenmodes were employed in these works with relative amplitudes

ranging from order one to one thousand. Typical output was a display of the

normalized kinetic energy of the perturbations. It is in terms of this quan-

tity that shows explicitly that transient growth leads to the large amplitudes

cited before there is eventual decay. The initial distributions used for the

optimal values are given in FarreU (1988) and Butler and Farrell (i992). In

terms of the initial-value problem this is important information and certainly

bears heavily on the possible physical realization. Examination of the initial

conditions that produce optimal growth show that the optimal initial con-

ditions for strictly two-dimensional disturbances have discernible structure

while those that produce optimal growth of three-dimensional disturbances

are rather nondescript. Thus it should be relatively easy to choose initial

conditions that approximate the three-dimensional optimal conditions while

some care must be taken to choose initial conditions which will approxi-

mate the optima] two-dimensional disturbance. This aspect of realization

of the optimal conditions is a major point of this study. Butler and Farrell

(1994) show that a threshold amplitude exists for optimally configured two-
dimensional initial conditions. For amplitudes above the threshold, transient

growth leads to a nonlinear evolution to quasi-steady finite amplitude struc-

tures, and for amplitudes below the threshold, the decay rate for long time
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behaviouris predictedby the slowest-decayingOrr-Sommerfeldmode.The
optimizationproceduresusingtheeigenfunctionexpansionsin thesestudies
aredependenton thefact that the discreteeigenfunctionsform a complete
setandthereforearenot directlyapplicableto aproblemsuchasthebound-
ary layerwherethe completeset wasshownby Salwenand Grosch(1981)
to bealinearcombinationof discreteandcontinuumeigenfunctions.Butler
and Farrell (1992)did study the boundarylayeroptimizationproblemby
usingthe channelflowsolutionsto representthe continuousspectrumasa
discretesetof modes.Thesolutionprocedurechosenheredoesnot present
the samedifficultiesin generalizationto a problemwith a continuousspec-
trum sinceit doesnot dependon the expansionof an initial conditionin
termsof its eigenfunctions.

The presentationof Gustavsson(1991)wassomewhatdifferent. Here,
it wasconsideredsufficientto takeonly oneof the normalmodesfrom the
Orr-Sommerfeldequationandcombinethiswith six fromthe accompanying
Squireequation. In effect,this is an initial-valueproblembut extremely
limited. Similarly,ameasureof theenergyis displayedbut with theconcen-
tration on the energygainedby theSquiremode.Theunknowncoefficients
hereweredeterminedby requiringthe Orr-Sommerfeldmodeto haveanen-
ergyof unity at timezero. It wasshownthat, if thereis sufficientobliquity
of the waves(nearly90degrees),theenergyfor the Squiremodecantran-
sientlyincreaseto almosta factorof 100.In this case,three-dimensionality
is crucialbut this in no waymakesit accessibleasa methodfor realizing
largetransientgrowthin anarbitraryinitial-valueproblem.Gustavssondid
considerthe effectsof symmetricalandasymmetricalinteractionof the two
setsof eigenfunctions.Therearedecidedlydifferentresponsesdepending
upon which choiceis made. In particular, a symmetricOrr-Sommerfeld
modeinteractingwith an asymmetricalSquiremodeleadsto the largest
amplitudefor the energy.In everycase,there is eventualdecayafter the
maximumastimeadvancesfor snbcriticalvaluesof the Reynoldsnumbers.

Liketheboundarylayer,viscosityis criticalto theperturbationsin chan-
nel flows. Without a viscousfluid, thereis no instability in anyof these
flowswhencastin termsof normalmodes.Case(1960)investigatedplane
Couetteflow in an inviscid fluid and,by the useof Laplace transforms,

demonstrated that there are no normal modes at all, whether decaying or

growing. At the same time he also showed that there are other solutions

to this problem if one makes the proper analysis. The additional solutions

are those due to a continuous eigenspectrum. Although not covered to this

extent, plane Poiseuille flow must follow in like manner. Once the fluid is

viscous, then the results are reversed, i.e., there is no continuous spectrum

for channel flows but it has been proven that there is an infinite number of

normal modes and the set is complete (DiPrima and Habetler, 1969). The

boundary layer (see Gustavsson 1979, e.g) possesses both spectra because it

is a semi-infinite problem. Parenthetically, however, it is interesting to note

that there are only a finite number of normal modes for the boundary layer

(see Mack 1976; Grosch and Salwen 1978) with the number depending upon



the valueof the Reynoldsnumber.Salwenand Grosch(1981)showedhow
an arbitrary initial disturbancecanbeexpandedin termsof the complete
set of discreteand continuumeigenfunctions,but determiningan optimal
initial conditionwouldbedifficult. It is only for infinite Reynoldsnumber
that an infinite (all damped)setof normalmodesis possible.

Physically,viscositycausesinstability in much the sameway that a
spring wouldbe unstableif the springforce had a time delay. Mathe-
matically, it is a questionof phasingof the perturbations. This is best
illustrated by consideringthe equationfor the total kinetic energyof the
perturbations.The time rate of changefor this energydependsupon two
essentialterms: dissipationdueto viscosityandproductionmanifestedby
oneof the Reynoldsstresscomponentsinteractingwith the meanftow to
transferenergyandover-cometheviscousdissipation.In the caseof chan-
nelflowsthisprocessispossiblefor Poiseuillebut not for Couetteflow. And,
the boundarylayeris alsounstablein theseterms.

Becauseof theSquiretheoremandthefact that astability boundarywas
thought to besufficient,three-dimensionalitypersewasneglectedbecause
it wasrecognizedthat purely two-dimensionaldisturbanceshad the largest
growth factors. Anotheroftenoverlookedreasonis the fact that the Orr-
Sommerfeldequationis only fourth rather than sixth order. This result is
fortuitous,makesfor easein the mathematics,but omits importantphysics.
The link to resolutionof this problemis the Squiremodeequationthat is
coupledto the behaviorof the Orr-Sommerfeldequationsolongasthereis
threedimensionality.It is this pair of governingequationsthat hasformed
the basesfor the citedstudiesin transienttemporalbehavior.Except for
the investigationof Gustavsson(1979)that usesthe Laplacetransformfor
the boundarylayer,the workhasreliedcompletelyonsolutionsin termsof
normalmodes.If thetransientdynamicsis to beimportant,thentheeffects
of specificinitial conditionsmustbeexaminedtogetherwith anyoptimum
strategy. Certainly,three-dimensionalitymust be treated in a thorough
manner. Theseaspectsof the linear perturbationproblemare the central
goalsof this presentation.This is donewith theuseof numericalintegration
of the governingpartial differentialequations.In no way is an expansion
in normalmodessuggestedbut, at the sametime, it will beseenthat all
of theknownresultsof classicalstability theoryaswellasthe optimization
problemcanbe reproduced.It is further stressedhow important are the
detailsof the perturbationfield,mostnotably thevorticity.

2 BASIC GOVERNING EQUATIONS

For plane viscous channel flows, the fluid is taken as incompressible with

the basic flow parallel, U = U(y), V = W = 0. Then, the nondimensional

]_inearized equations of motion can be written as

Ou Ov Ow

o---i+ + = o, (1)



and

1
0-7+ Ox+_V+_=R_-'LOx_+-5-_y_+ oz_j' (2)

0-_ ÷ 69x -6-_y - Re-1L_x2 + _y2 + Oz2j , (s)

0-7+ Ox+_=Re-'t_x_ +-_ + Oz_J (4)

Here, Re = Uoh/u is the Reynolds number, where h is the channel hail-

width, bo the centerline velocity and u the kinematic viscosity. Time is

nondimensionalized by the advective time scale h/Uo. On using the Fourier

transformations defined with respect to x and z as

_(a; Y;_;t) =/_ _ /_

equations (1) to (4) become

v( x, y, z, t)ei(_x+TZ)dxdz, (5)

and

0_

Ot

Of_

-i(_+_)+ _ =o, (6)

--- iaUft + U'_- i_= Re -1 [Oy 2 -52ft , (7)

0_ 0P [ 02_ ]0-7- i_u_ + _ = Re-' _ - _ , (8)

Ofv iaUS - iTP = Re-' [ Oy 2 - 52&Ot

respectively, with U' = dU/dy and 5 2 = o_e + 7 2.

The Squire transformation, written as

(9)

a_ + 75 = 5_ (10)

- ,_ + (_t[, = 5_ (11)

and combined with operations on (6) to (9) enables us to obtain the pair of

equations

\-_-_y2-52{} + i(_U"v= Re-l [_y4 - Za -_y2 + 54{J (12)

and

where sin ¢ = 3'/5 and t_ is proportional to the normal vorticity component

(_ = iSt_). The first term on the right hand side of (13) is called the vortex



tilting term whichactsasaforcingterm to thenormalvorticity component.
The vortex tilting term is a productof the meanvorticity in the spanwise
direction (wz = -U') and the perturbation strain rate (Ov/Oz), and for
a threedimensionaldisturbance,givesrise to the increaseof the normal
vorticity component.It is clearthat thesolutionsof (12)and(13)combined
with continuityandthe Squiretransformationareequivalentto solving(6)-
(9). Likewise,/_ can be determined from (9). In either case, solutions of

the equations are subject to imposed initial conditions and the following

appropriate boundary conditions at the channel walls

_;(+l,t) = (+l,t) = _,(+l,t) = O.
Y

For the mean velocity, we shall consider both plane Poiseuille flow

(14)

U(y) = 1- y2

and plane Couette flow

U(y) = y.

To evaluate the other velocity components, the quantities _ and _ are

first computed from (12) and (13), respectively. Then the Squire transfor-

mation (10)-(11)is inverted to give _ and

i cos ¢ 0_
- sin ¢_, (15)

& Oy

i sin ¢ 0_
if, - + cos ¢6:. (16)

50y

By knowing the velocity components, the vorticity components can be deter-

mined in a straightforward manner by appealing to their definitions, yielding

and

&v = -i7 fi + iaW =_-iSff), (18)

0fi
- -- (19)_zz = -i(_ Oy"

Finally, we remark here that, if one seeks solutions to (12) and (13)

of the form e -i_t, then (12) becomes the more familiar Orr-Sommerfeld

equation and (13) the Squire equation. Solutions of these equations will

yield classical normal modes and normally (i) transient dynamics and (ii)

effects of various initial conditions are ignored. At sub-critical Reynolds

numbers, where the normal modes are damped, transient behavior may be

extremely important. A variety of authors used eigenfunction expansions

to examine transient dynamics (e.g., Gustavsson, 1991; Butler and FarreU,

1992; Reddy and Henningson, 1993; as main references). In particular,



sincetheeigenfunctionsform a completeset(DiPrimaand Habetler,1969;
Herron,1980),solutionsto (12)and(13)weresoughtin theform

e(y,t) = A3 + Ej wj(y)

where {_j} and {ttj} are the eigenvalues of the Orr-Sommerfeld and Squire

equations, respectively, with the eigenvalues distinct. As already noted, ei-

ther (i) variational methods are then used to determine optimal growth; or

(ii) a finite combination of eigenfunctions, though extremely limited, are

then chosen and their subsequent transient behavior followed. This is not

necessarily a weakness because an infinite set is available but only a finite

number have been used. An alternative, yet novel, approach is to solve the

system (12) and (13) directly by a simple numerical scheme. While this ap-

proach does not directly select the optimal initial conditions that provide the

optimal algebraic growth for a given set of parameters (5, ¢, Re), it does al-
low one to follow rather easily the transient dynamics of any given prescribed

initial condition and to determine if optimal growth can be approximated by

realizable initial conditions. Also, simple maximization methods (see section

4.3) can be easily applied to the numerical solution in order to select the

optimal initial condition in a rational manner. Farrell and Moore (1992) also

integrated the governing equations for oceanic flows, but again their focus

was on determining an optimal initial condition by repeated integration of

the perturbation equations and its adjoint and not on the dynamics of spe-

cific initial conditions. Here we show that the optimal initial condition can

be determined in a straight forward manner which circumvents the necessity

of using the adjoint solution, is conceptionally easier to understand, and is

easier to implement than the adjoint method or the eigenfunction expansion

method. The approach, however, is not necessarily computationally faster.

Furthermore, this approach is more robust than employing eigenfunction

expansions since it can be applied to other classes of problems where only a
finite number of normal modes exist; e.g., boundary layers, free shear layers

(see Criminale, et al. 1994 for related work on inviscid flows).

3 NUMERICAL SOLUTIONS

The partial differential equations (12) and (13) were solved numerically

by the method of lines. The spatial derivatives were center differenced on

a uniform grid within the channel while one-sided differences were used at

the walls. The resulting system was then integrated in time by a fourth-

order Runge Kutta scheme with all calculations done in double precision.

The results were checked for convergence by increasing the number of mesh

points, varying between 500 mesh points for low Reynolds numbers to a

maximum of 10,000 at larger Reynolds numbers. The table below shows the

numerically computed growth rate for plane Poiseuille flow as a function of

grid points for Re = 10,000, 5 = 1 and ¢ = 0°:



GRID POINTS GROWTHRATE
500 0.003726
1000 0.003736
2000 0.003739

The exactvaluefrom Orszag(1971)is 0.00373967.The numberof grid
points weresufficientto resolvethe boundarylayersnearthe walls. No ef-
fort wasmadeto optimizethe numberof grid pointsbyemployingnonuni-
form meshes.If this weredone,far lessgrid pointswouldbe needed.All
calculationspresentedin this paperrepresentconvergedsolutions.

Beforeinvestigatingthe effectsof variousinitial conditionsand their
subsequenttransientbehavior,it wasfirst instructiveto comparefor plane
Poiseuilleflow numericallycomputedgrowth rates and eigenfunctionsto
thoseof the 0rr-Sommerfeldat super-criticalReynoldsnumbers. Figure
I(A) showsthe growthratesobtainedfrom the numericalsolutionof (12)
(shownascircles)and thoseobtainedfrom the Orr-Sommerfeldequation
(shownasthe solidcurve)for Re = 10,000 and ¢ = 0% The agreement is
excellent. The corresponding real and imaginary parts of the eigenfunctions

from both the numerical solution (solid) and the Orr-Sommerfeld solution

(dashed) are displayed in figures I(B) and I(C), respectively, for the case

5 = 1 and ¢ = 0 °. Note that the two curves essentially lie on top of each

other. To demonstrate the strength of the procedure, figure 2 shows similar

results but at Re = 10 6.

4 PERTURBATION ENERGY

As mentioned above, we are particularly interested in the effects of vari-

ous initial conditions and their subsequent transient behavior at sub-critical

Reynolds numbers. In order to examine the evolution of various initial

conditions, the energy density in the (5, ¢) plane as a function of time is

computed. The energy density is defined as

E(t;&,¢,Re) =/'__ [lfi21 + l_2] + ]ffj2]] dy. (20)
1

The total energy of the perturbation can be found by integrating (20) over

all 5 and ¢. A growth function can be defined in terms of the normalized

energy density, namely

E(t; &, ¢, Re) (21)
a(t; ¢, Re) = E(0; a, ¢, Re)

measures the growth in energy at time t for a prescribed initial condition at

t=0.

Various initial conditions are used to explore transient behavior at sub-

critical Reynolds numbers. For the integration of (12) the initial conditions

for _ are provided in the table below; 9t0 = 9t0(a, 7).



CASE #(y,O)

I

II

III

IV

V

_o(1 - y2)2

co t3-
____._2CO S [_ \le -yz/4)'# [ /3 - cos[py)]_

ftoy( 1 - y2)2
," z_ "_1 e -y2/4)'

y_[cos/3 -cost, py)]_ ;

--; /3= nTr

/3--'//7i-

Note that the first three cases correspond to symmetric initial conditions

while the last two are asymmetric. For the integration of (13) the initial

conditions for _ are provided in the table below.

CASE

i

ii

0

_1COS(/30Y); /30= (2n- 1)_/2

iii f_l sinl/31y); /31 ---- //71-

The second initial condition is symmetric while the last is asymmetric. We

remark here that, in choosing these particular initial conditions, no attempt

was made to find an optimal initial condition that correspond to a maximum

transient growth. Also, particular eigenmodes are not investigated since

these were studied previously by Gustavsson (1991). Rather, reasonable ini-

tim conditions consisting of polynomials and transcendental functions were

constructed and their subsequent transient behavior followed. The above

set of initial conditions is general enough that it should be sufficient to test

whether the optimal transient growth previously determined is realizable or
not.

4.1 TWO-DIMENSIONALITY

In this section results are presented for plane Poiseuille flow with 5 =

1.48, ¢ = 0° and a Reynolds number of Re = 5,000, and for plane Couette

flow with & = 1.21, ¢ = 0 ° and Re = 1,000. For plane Poiseuille flow,

this Reynolds number is sub-critical and thus the growth function G will

eventually decay in time to zero. Because plane Couette flow is linearly

stable, G will always eventually decay. These values correspond to those

found by Butler and Farrell (1992) who showed that these values are the

best 2-D optimal using variational techniques in the sense that they give the

largest algebraic growth.

The growth function is plotted as a function of time in figure 3 for plane

Poiseuille flow and in figure 4 for plane Couette flow. In both figures, the

9



curvesin (A) correspondto allpossiblecombinationsofthe initial conditions
for _ and _ with _0 = ftl = t = n = 1. Except for some minor algebraic

growth in the case of plane Couette flow, the growth function decays. This
decrease in the amplitude of the maximum growth is somewhat unexpected

since previous work shows that by considering optimal initial conditions that

substantial growth can occur even for these two dimensional disturbances.

Therefore, this issue was pursued further by considering initial disturbance

velocity profiles with more zeroes which, in some sense, corresponds to the

higher eigenmodes whose inclusion in the optimization analysis was neces-

sary to achieving the high growth rates. Figures 3(B) and 4(B) are for the

initial condition (II,i) with various values of n. For plane PoiseuiUe flow and
with n = 7 the maximum value is 12, and for plane Couette flow and with

n = 3 the maximum value is 4.8. In both cases, moderate transient growth

is observed, with the maximum growth being lower than that obtained by

Butler and Farrell (1992). It is interesting to note that an "optimal" initial
disturbance will be found for both the Couette flow and the Poiseuille flow

that is consistent with the optimal conditions determined by Butler and Far-

re]] (section 4.3). For Couette flow, the maximum optimal energy growth for

this choice of & and ¢ occurs at t = 8.7. Here, we observe that the largest

growth is for the initial condition with n = 3 and the maximum occurs at

time t = 7.8. The same can be said of Poiseuille flow. The optimal initial

conditions produce a maximum at time t. = 14.1 and the largest growth here

is for n = 7 that has a maximum at time t = 14.4. It is easy to see how these

solutions for different values of n can be combined to produce an optimal

solution. This issue is explored further in section 4.3.

4.2 THREE-DIMENSIONALITY

In this section results are presented for plane Poiseuille flow with _ =

2.044, ¢ = 90 ° and a Reynolds number of Re = 5,000, and for plane Couette

flow with 5 = 1.66, ¢ = 90° and Re = 1,000. These values appear in

Butler and Farrell (1992) and the choice of 5 corresponds to the streamwise

vortex with largest growth. For plane Poiseuille flow the global optimal
coincides with the streamwise vortex but not so for Couette flow. In the

latter case, the global optimal was shown to be at ¢ ,_ 88 °. Here, we are

only interested in presenting two representative cases. In all calculations we

set f_0 = f_l = _ = n = 1. Changing the sign of _1 produced only very

minor changes in the solutions. Numerical experiments were also carried

out for various combinations of n and _. In all cases, the largest value of

G are for the cases presented below, namely n = A = 1, and therefore only

these cases are presented here.

The growth function is plotted as a function of time in figure 5 for plane

Poiseuille flow and in figure 6 for plane Couette flow. The curves in (A) cor-

respond to the initial condition (i) for _, while the curves in (B) correspond

to (ii) and the curves in (C) correspond to (iii). Comparing figures 3 and 5

for the case of plane Poiseuille flow, and figures 4 and 6 for the case of plane

Couette flow, we see that the transient growth is significantly larger for three

10



dimensionaldisturbancesthan thosefor two dimensionaldisturbances.For
planePoiseuilleflow, the maximaof the symmetricdisturbances(labeled
I, II, andIII) andthe maximaof the asymmetricdisturbances(labeledIV
and V) in figure 5(A) arewithin 90%of the globalmaximareportedby
Butler and Farrell(1992).Theypoint out that the presenceof streamwise
vorticity,whilepassiveto nonlineardynamics(Gustavsson,1991),cancause
the developmentof streakswhichmaythemselvesbeunstableto secondary
instabilitiesor possiblyproducetransientgrowthof other typesof pertur-
bations.ForplaneCouetteflow,themaximaof the symmetricdisturbances
(labeledI, II, andIII) in figure6(A)arewithin 97%of themaximareported
by Butler and Farrell,while the maximaof the asymmetricdisturbances
(labeledIV and V) are significantly smaller. The significance of this is that

any initial condition with _ velocity symmetric and no initial vorticity will

give near optimum results when three-dimensionality is considered. This

easily explains the growth observed by Gustavsson (1991) when a limited
normal mode initial condition was chosen.

Since this large transient growth for three dimensional disturbances is

a direct result of the growth of vorticity, it is necessary to ask whether the

growth is a special case because the initial vorticity is neglected, or will

the growth in energy remain once the energy of nomzero initial vorticity

is included in the calculation. Note in figures 5 and 6 that the symmetric

disturbances all behave in a similar manner when the initial condition for

is given by (i), but differ substantially when conditions (ii) or (iii) are

used. It is clear that the substantial growth in energies shown in figure 5(A)

is directly attributable to the generation of normal vorticity through the

coupling term in equation (13). This produces growth factors of 3900-4200

for symmetric initial profiles (I, II, and III) and growth factors of 2200-2400

for anti-symmetric initial profiles (IV and V). The responses change signif-

icantly when the energy of the initial profiles (ii) and (iii) are included in

the initial normalization of the growth factor G. The responses to initial

profiles I and IV are lowered but still show significant growth. The initial

energy of II and IV are larger than those of (ii) and (iii). However, when the

energies of the initial normal vorticities (ii) and (iii) are significantly larger

or comparable to the energies of the initial velocity profiles II, III, and V, the

substantial transient growth as measured by the total energy can decrease

by a factor of ten. This is not tosay that the transient growth shown in (A)

is not also present in (B) and (C), but that the normalization in (B) and (C)

reflects a more proper measure of growth that includes the total energy of

an arbitrarily chosen initial disturbance and not just an optimal one. This

suggests that the algebraic growth as measured here and in previous work

is extremely sensitive to the presence of any initial normal vorticity, specif-

ically to the inclusion of the energy associated with the initial streamwise

vorticity in normalization of the growth factor. Vorticity components are

presented in figure 7 for plane Poiseuille flow with initial conditions given by

(II,i) and (II,ii), respectively, showing that the maxima in time of the nor-

mal and spanwise vorticity components decrease when the normal vorticity
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componentis initially non-zero.The streamwisecomponentdecaysand is
unaffectedby this changeof initial conditions.

Table 1: Maximum values at various Re corresponding to the initial condi-

tion (I,i) for plane Poiseuille flow with 0 = 2.044 and ¢ = 90 °.

500 41.0 45.6

1000 82.0 181.9

2000 164.0 726.9
4000 _327:0i 2907.0

-5_0- 409.0 4542.0

t_/Re G*/Re 2

0.0820 1.824x10 -4

0.0820 1.819x10 -4

0.0820 1.817x10 -4

0.0818 1.817x10 -4

0.0818 L1.817x10 -4

Table 2: Maximum values at various Re corresponding to the initial condi-

tion (I,i) for plane Couette flow with 5 = 1.66 and ¢ = 90 °.

Re t*

500 69.0

1000 139.0

2000 277.0

4000 554.0

8000 1109.0

*

291.4

1165.2

4660.7

18642.4

74569.6

if�Re
0.1380

0.1390

0.1385

0.1385

0.1386

1.165x10 -3

1.165xi0 -3

1.165x10 -3

1.165x10 -3

1.165xi0 -3

Finally, shown in Tables 1 and 2 are the times (t*) for which the growth

function attains its maximum (G*) at various Reynolds numbers for plane

Poiseuille and plane Couette flow, respectively. Note that the time scales
as Re while the maximum scales as Re 2, as previously pointed out by Gus-

tavsson (1991).

4.3 OPTIMAL INITIAL CONDITIONS

A mechanism for rapid transient growth when the initial conditions is

expressed as a sum of the eigenfunctions has been explained by Reddy and

Henningson (1993). The concept is that a group of eigenfunctions are nearly
linearly dependent so that, in order to represent an arbitrary disturbance

(say), then it is possible that the coefficients can be quite large. Now, since

each one of these nearly linearly dependent eigenfunctions have differing

decay rates, the exact cancellations that produce the given initial distur-

bance might not persist in time and thus significant transient growth can

occur. This process can (and is) taken a step further in order to determine

the optimal initial condition (still expressed as a sum of the non-orthogonal

eigenfunctions) that produces the largest relative energy growth for a certain

time period. This process is completed and it does have the feature that the

12



nearlylinearlydependenteigenfunctionsaremultipliedby coefficientsthree
ordersof magnitudesgreaterthan theothers.This optimalinitial condition
producesa growthfactor of about20 for the two-dimensionaldisturbance
in Poiseuilleflow. However,this optimalgrowthis nearlydestroyedby not
includingthefirst eigenfunction(growthdropsto a factorof 6 ratherthan
twenty)whichseemsto indicatethat the prior explanationof (initial) ex-
act cancellationsby the nearlylinearlydependenteigenfunctionsis not the
entiremechanism.Butler andFarrell(1992)alsocalculatedoptimal initial
conditionsin termsof a summationof the eigenfunctions(althoughthey
put no particularemphasison the importanceof usingthis approach)and
re-iteratedthe importanceof nearlylineardependenceof the modesto the
transient growth. Butler and Farrell (19.92)alsoexplainedthe transient
growthof the optimalinitial conditionsin termsof thevortex-tiltingmech-
anismandtheReynoldsstressmechanism,sincethese(physical)arguments
applyno matterwhat the solutionmethod;perhapsin theendthey should
be preferredto thosebasedstrictly on the mathematicalprocedure,espe-
cially sinceowing to the non-orthogonalityandnearlinear dependenceof
the eigenfunctions.The resultingoptimal initial disturbanceis difficult to
visualizephysicallyfor someonewhois not privy to the calculations.

Usingthe methodthat wehavebeenfollowing,anoptimizationproce-
durecanbedeterminedwithoutresortingto a variationalprocedurerequir-
ingthenumericaldeterminationoftheeigenfunctions.Nowfor thesechannel
flows, the difficultiesof calculatingthe eigenvaluesand eigenfunctionsare
wellknown.A groupof eigenfunctionsarenearlylinearlydependentandthe
wholesetis notorthogonal.Also,the issueof degeneraciesin theparameter
spacemustbeconsidered.Thus,anattempt to write a specificinitial con-
dition asaneigenfunctionexpansion(whichalsorequiresthedetermination
of the eigenfunctionsto the adjoint equation)runsinto difficultiesfor the
uninitiated. In this paper,weshowthat calculatinggrowth for particular
initial conditionsdoesnot presentgreatdifficulty. Furthermore,a closer
inspectionof initial conditionII suggeststhat eachof thesedisturbancesis
in essencea singleFouriermodeof an arbitrary initial condition. If one
wereto consideran arbitrary oddfunctionfor the fi velocitysatisfyingthe
boundaryconditionswritten in termsof a Fouriersineseries,thentheinitial
conditionin the _ velocityis givenby II. Thus,if onewishedto determine
anoptimal initial disturbance,a maximizationprocedurecouldbe applied
to anarbitrary linearcombinationof thesemodes,all of whichareinitially
orthogonalandlinearlyindependent.Clearly,if onewantedto alsoinclude
non-zeroinitial vorticity in suchanoptimizationschemeit wouldnot be
difficult to include(andtheseinitial conditionsareof courseveryimportant
whenmodelingrealdisturbancesasopposedto optimaldisturbances).The
resultspresentedhereshowthat, if includedin theoptimizationprocedure,
the initial vorticity modeswouldnot contributeto the optimalsolutionfor
the casesconsidered.
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]_1
1

which requires

To start our optimization scheme, we consider the total solution ff = (_, b, ¢)

to be the sum
N

77(y, t)= E(ak + ibk)ffk(y,t)
k--1

where each of the vectors gk(y, t) represents a solution to equations (12) and

(13) subject to the initial conditions

{ cosCsinklry }
sin Csin krcy

In order to maximize the growth function, it is sufficient to maximize the

energy

fE(t) = t). t)
1

subject to the constraint

E(0) = 1.

Therefore, we use Lagrange multipliers to maximize the function

g.(y,t), ff*(y,t)dy- A (_ g(y,O), ff*(y,O)dy-1)

OG OG
Oak - 0, Obk = O, k = 1,2,...,N.

The set of equations thus derived produce a 2N × 2N generalized eigenvalue

problem. A search over the eigenvectors gives the initial condition with

initial unit energy that maximizes the function G at time t.

To illustrate the optimization procedure, we perform the calculations for

the two cases reported by Butler and Farrell (1992). The first is the compu-

tation of the two-dimensional optimal for 5 = 1.48, ¢ = 0° and Re = 5,000.

In figure 8(A) we show the growth factor at t = 14.1 for each individual mode

as well as for the optimal solution for various values of N. The convergence

as N --* oc is nicely illustratedi compare to Reddy and Henningson (1993),

e.g. In figure 8(B) the magnitudes of the coefficients which produce the op-
timum with N = 20 are shown. There are no surprises. Each coefficient is of

reasonable size, with the largest coefficient being a factor of ten greater than

the first coefficient, and not a factor of a thousand as is the case when using

eigenfunction expansions. The magnitudes peak for n = k, 7 and 8 which

could be easily predicted from the previous graphs for the responses to each

individual mode. For completeness the initial velocity profiles are shown in

figure 9. These are consistent with the the initial perturbation streamfunc-

tion contour plots shown in Butler and Farrell (1992). A similar calculation
could be made for Couette flow but is unnecessary since the relevant infor-

mation is easily determined by examination of figure 4(B). The magnitudes
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of the coefficientswhichproducethe optimalgrowth at t = 8.7 peaks be-

tween modes 3 and 4, and converge quickly as N _ _. The resulting initial

condition is consistent with the initial perturbation streamfunction contour

plots shown in Butler and Farrell (1992) for the same case. The second cal-

culation is for the optimal three-dimensional disturbance. The parameters

chosen are Re = 5,000, 5 = 2.044 and ¢ = 90 °. The initial conditions that

produce a maximum growth at t = 379 are found. The results are shown

in figure 10, and the composition of the initial conditions in terms of the

modes chosen here could be easily determined from the individual responses

of each mode. The key to this observation is that the chosen modes are

not nearly linearly dependent as are the eigenfunctions and indeed provide

a rational and easily understood basis for the calculation of arbitrary initial
conditions.

It must be re-iterated that, although it is possible and conceptually easy

to reproduce the optimal initial conditions that have been previously found,

the maximum transient growth is only a measure of what is possible and

not what will actually occur as has been the difficulty in experiments. It is

at least as important to investigate whether such large growth is possible

for arbitrary initial conditions. In this regard, the results presented here

produce a mostly negative answer to this question. For two-dimensional

disturbances in Poiseuille flow, the transient growth observed for arbitrarily

chosen initial conditions using this approach are, at best, only 25% of the

optimal. When considering a fixed wavelength 5 and a fixed obliqueness ¢,

it is seen that very large relative energy growth of the perturbation can be

observed in Poiseuille flow for oblique disturbances with arbitrary velocity

profiles restricted to having zero initial normal vorticity, but the relative

energy growth quickly decreases when arbitrary disturbances are combined

with initial normal vorticity. Similar results are found for Couette flow.

5 CONCLUSIONS

Plane Poiseuille flow and plane Couette flow in an incompressible fluid

have been investigated subject to the influence of small perturbations. In-

stead of using the techniques of classical stability analysis or the more re-

cent techniques involving eigenfunction expansions, the approach has been

to first Fourier transform the governing disturbance equations in the stream-

wise and spanwise directions only and then solve the resulting partial dif-

ferential equations numerically by the method of lines. Unlike traditional

methods where traveling wave normal modes are assumed for solution, this

approach offers a means whereby completely arbitrary initial input can be

specified without having to resort to the complexity of eigenfunction ex-

pansions. Thus, arbitrary initial conditions can be imposed and the full

temporal behavior, including both early time transients and the long time
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asymptotics,canbedetermined.All ofthestability datathat areknownfor
suchflowscanbe reproduced.Finally,anoptimizationschemeis presented
usingtheorthogonalFourierseriesandall previousresultsusingvariational
techniquesandeigenfunctionexpansionsarereproduced.

The benefitof this novelapproachis clear: it canbe appliedto other
classesof problemswhereonly a finite numberof normalmodesexist,such
as the boundarylayer. In addition, this numericalapproachhasrecently
beensuccessfullyappliedto freeshearflowsin an inviscidfluid (Criminale
et al., 1994).Theseconceptsarebeingextendedto the Blasiusboundary
]averin an incompressibleor compressiblemedium.
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Figure 1: (A) Plot of growth rates as a function of wavenumber a. The

circles corresponds to the numerically computed values from the partial

differential equation, and the solid curve corresponds to the growth rate

computed using the Orr-Sommerfeld equation. (B) The real part and (C)
the imaginary part of the eigenfunction as a function of y for a = 1. Results

for plane Poiseuille flow with ¢ = 0° and Re = 104.
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Figure 2: (A) Plot of growth rates as a function of wavenumber a. The

circles corresponds to the numerically computed values from the partial

differential equation, and the solid curve corresponds to the growth rate

computed using the Orr-Sommerfeld equation. (B) The real part and (C)

the imaginary part of the eigenfunction as a function of y for a = 0.44.

Results for plane PoiseuiUe flow with ¢ = 0 ° and Re = 10%
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